Nine Month Internship (Practicum)

All students gain real world experience for nine months of the program (15 hours/week) tackling data science and analytics problems at organizations around the San Francisco Bay Area and beyond. Each year, roughly 60 companies come to pitch their projects to our students during “Pitch Week” (past and current partners include those shown below). Students with complementary strengths are matched up to form a team. To ensure success of the projects, each team is actively mentored by a faculty member who participates in weekly meetings to supervise and provide technical and mathematical expertise.

Following an initial hypothesis, students typically engage in data acquisition, exploratory data analysis, feature extraction, model development and evaluation, as well as oral and written communication of results. Class schedules are set so that students can work onsite two days per week.

  • Internships begin in mid-October.
  • Students devote 15 hours a week to internship work on average.
  • Projects may be paid or unpaid.

Internship Partners

A select list:

Past Projects


ACLU Criminal Justice

Our Team: Qianyun Li

Goal: At the ACLU, the student identified potential discrimination in school suspensions by performing feature importance analysis with machine learning models and statistical tests.

ACLU Micromobility

Our Team: Max Shinnerl

Goal: At the ACLU, the student analyzed COVID-19 vaccine equitable distribution data. They developed interactive maps with Leaflet to visualize shortcomings of the distribution algorithm and automated the cleaning of legislative record data. They also developed a pipeline for storing data to enable remote SQL queries using Amazon RDS and S3 from AWS.


Our Team: Suren Gunturu

Goal: At AWS, the student employed machine learning techniques to interpret user natural language questions to SQL queries. They did this by interpreting features such as database information and input questions and mapped them to queries. They read available architecture on the topic and implemented them both from scratch using a Seq2Seq architecture as well as calling HuggingFace pretrained transformers for this task.


Our Team: Sophie Wang, Eriko Funasato

Goal: Students at Bold developed an end-to-end machine learning pipeline using Python’s Scikit-learn to classify churned customers. They also presented feature importance from the model to aid decision making. After being deployed in production, the pipeline increased the customer retention rate. Their work also included collaboration with the customer success team and performing A/B testing on email campaigns.


Our Team: Veeral Shah, Ricky Zhang

Goal: At Boost, students built and deployed a logistic regression pipeline to dynamically predict college basketball in-game win probability using Python and PostgreSQL. They established novel metrics for efficiency, excitement, and tension by analyzing mean, variance, and volatility trends of in-game win probability output.

Our Team: Nicolas Decavel-Bueff, Taince Tan

Goal: Students at engineered and integrated machine learning techniques to perform NER as a tool to better collect and preprocess data. On another project, they worked on creating a content-based recommendation system to help identify competitors.


Our Team: Zhimin Lyu, Victor Palacios, Daniel Carrera

Goal: At Cerenetics, students developed and deployed a Python multi-threading application for a brain functional MRI data preprocessing pipeline (DICOM- BIDS - normalized time series) to extract voxel signals and predict the presence of mental health disorders. They also created and implemented a novel Iterative Spectral Clustering algorithm for brain functional MRI voxel clustering.

Our Team: Emre Okcular, Yue Zhao

Goal: Students at applied machine learning to website ad clicks and inner clicks data using Python's Scikit-learn and Matplotlib for visualization.

Electronic Arts

Our Team: Kexin Wang, Wenyao Zhang

Goal: At Electronic Arts, students built an anomaly detection process with supervised models (2D CNN) and improved model robustness with an unsupervised algorithm (Autoencoder) using Keras.


Our Team: Yihong Shen, Jordan Uyeki

Goal: Students at Eventbrite used SQL and Python to compare revenue opportunities across different creator segments and to better understand creator behavior over time. They also compared various methods for event recommendation systems (collaborative filtering, networks, ERGM models, etc).


Our Team: Zixi Luo

Goal: At Facebook, the student worked on the Facebook Community Product Group team to understand how businesses use Facebook groups. Their ultimate goal was to build a machine learning model to predict Facebook groups run by businesses and understand how they can improve the user experience.


Our Team: Flora Chen, Hsuan-Yu Lin

Goal: At Jumio, students conducted EDA on identify thresholds that were effective at catching financial fraud. On another project, they built a flask app and set up modeling endpoints on AWS.


Our Team: Shiqi Tao, Rahul Bethavalli

Goal: Students at LaHaus employed NLP and deep learning techniques to identify description quality using Python. They also conceptualized and developed a suggestion system to recommend the most relevant custom page tags for real estate listings using a probabilistic random forest model. This resulted in an increase in the click-through rate by 70% post-deployment in production. On another project, they worked on improving the existing image captions for listings and leveraged zero-shot transfer learning of CLIP from OpenAI to generate qualitative and diverse captions. They implemented the end-to-end production pipeline using AWS, Pytorch, openAI, and Airflow.


Our Team: Ye Tao, Michelle JanneyCoyle

Goal: At LexisNexis, students used machine learning techniques to perform legal analytics and conducted a deep learning model for a classfication and text generation task. Additionally, they used matrix factorization to build a recommendation system in Python, and on another project they built a deep learning NLP API accessed by distributed spark job.


Our Team: Catie Cronister

Goal: At MedStar, the student built a deep learning model to predict the proper radiology protocol that a physician would prescribe and authored a paper based on their work.


Our Team: Weronica Green, Huidon Xu

Goal: Students at Metromile built and deployed a deep learning-based end-to-end computer vision system to identify vehicle quality issues using Resnet in PyTorch. They used the model predictions to run statistical analysis on various business metrics using SQL and Python. Lastly, they created an app that allows stakeholders to interact with the model predictions.

Metropolitan Transportation Commission

Our Team: Okeefe Niemann, Danh Nguyen

Goal: At the Metropolitan Transportation Commission, students created data pipelines to both organize and quality check jurisdiction entries. In addition, they created and fine-tuned deep learning models to classify buildings into zones.

New York Mets

Our Team: Moh Kaddoura, Trevor Santiago

Goal: Students at the New York Mets created an outfield defense model using multivariate distributions, powerful classifiers (RF and XGboost) and clustering. They also used SciPy and NumPy to create a matchup model that accurately predicts success rates for a certain batter against a certain pitcher, or vice versa.

Novi Connect

Our Team: Vaishnavi Kashyap, Phillip Navo, Sandhya Kiran Reddy Donthireddy

Goal: At Novi, students engineered a pipeline to automate extraction of applicable columns from Excel files using Pandas and FuzzyMatch. Additionally, they conducted funnel analysis to understand customer engagement with the company platform. On another project, they leveraged Google Data Studio and Google Analytics and powered web analytics dashboards with high-level Business metrics and user engagement.


Our Team: Tian Qi, Matthew Hui

Goal: Students at PG&E conducted exploratory data analysis to discover power outage patterns and employed machine learning techniques in order to identify assets that experience high risk events in the future using Python, SQL, AWS and Plantir Foundry.


Our Team: Audrey Barszcz

Goal: At Phylagen, the student utilized multiple machine learning models along with Shap feature importance to identify a subset of features that were the most predictive for classifying an outcome. On another project, they trained embeddings using a GloVe neural network model on genetic sequences.

Pocket Gems

Our Team: Yi Huang, Siwei Ma

Goal: Students at Pocket Gems used reinforcement learning to build a dragon agent that flies, follows and attacks in unity. They also developed a search engine and web server from scratch with NLP techniques.

Propeller Health

Our Team: Noah Matsuyoshi

Goal: At Propeller Health, the student predicted early life failures of sensors for medical device monitoring using Redshift (SQL) and Python.


Our Team: Yueling Wu, Hashneet Kaur

Goal: At Ranker, students prototyped a video recommendation engine using LightFM’s collaborative filtering model based on users' implicit feedback on various website events such as trailer viewed or item clicked / added to watchlist. On another projects, they generated a script to minimize the "position on list" bias issue using descriptive statistics and SQL to increase reliability of crowdsourced lists, performed audit on the current ranking algorithm, and identified discrepancies for the engineering team to resolve. They also identified trending shows by scraping data from Twitter, applying NLP techniques (e.g., parts of speech (POS) analysis, fuzzy string matching and sentiment analysis) and leveraging number of tweets and sentiment score.


Our Team: Amee Tan, Shruti Roy 

Goal: Students at Recology automated sequencing of garbage pickup using telematics data, DBSCAN Clustering and Haversine Distance calculation in Python. On another project, they predicted garbage collection time using XGBoost and Isolation Forest.


Our Team: Lucia Page-Harley, Maruo Napoli

Goal: At Reddit, students built a time series forecasting dashboard to understand and predict different video metrics. On another project, they performed analyses using SQL and Python visualizations to understand the German user-base at Reddit and planned/analyzed experiments to improve their product experience.

Stanford Graduate School of Business

Our Team: Kaiqi Guo

Goal: At the Stanford Graduate School of Business, the student explored different approaches such as BERT to detect and correct error in digitization of historical documents.

Stanford Medicine

Our Team: Daniel Blessing, Victor Nazlukhanyan

Goal: Students at the Stanford Medicine Department of Radiology conducted deep learning research and implemented computer vision methods to synthetically produce contrast-enhanced MRI images. Architectures included generative adversarial networks and U-Nets.

Our Team: Anni Liu, Aneri Dand

Goal: Students at employed machine learning techniques to forecast sales for Syrup's retailer clients. They used Jinja3 and Plotly to build dashboards for tracking metrics, providing insights to retailers, as well as logging the results of machine learning experiments.

The Schmidt Family Foundation 11th Hour mBio Project

Our Team: Elyse Cheung-Sutton, Yingtong Lin, Eileen Wang, Remi LeBlanc 

Goal: Students at the Schmidt Family Foundation's 11th Hour mBio project built web scrapers used on websites for African GMOs, IRS financial data, and news articles and created visualizations displaying the scraped information. They built a website to serve the analysis results using React and Django and trained a language model using and Pytorch to support classification of African news articles. In order to serve information about the uses of agricultural biotechnology, they also consolidated data into one central hub to serve through a web application and deployed this containerized web application with Docker.

UCSF Brain Networks Laboratory

Our Team: Christabelle Pabalan

Goal: At UCSF, the student used computer vision and deep learning techniques, including multitask learning and ensemble learning, to predict cognitive scores for Alzheimer's patients.

UCSF Department of Radiation Oncology - Brain Metastasis

Our Team: Berkay Canogullari, Tianxiang Zhou

Goal: Students at UCSF predicted the outcome (local failure and patient survival) for large brain metastasis treated with radiation. The project consisted of performing tumor segmentation using deep learning followed by extraction of imaging features for prediction of treatment outcomes.

UCSF Department of Radiation Oncology - Prostate Cancer

Our Team: Jared Mlekush, Shuyan Li, Dashiell Brookhart, Min Che

Goal: Students at UCSF worked with physicians to predict the likelihood of success of salvage radiation treatment to help oncologists determine treatment options for prostate cancer patients. They utilized logistic regression, Cox Proportional-Hazards models, and feature importance analysis to create Kaplan-Meier estimators for patients. They also analyzed physician’s notes to create a predictive model for determining diagnostic error using techniques from Natural Language Processing (NLP) including Bag of Words and Word2vec and Machine learning models such as Random Forest, XGBoost, and Logistic Regression.

UCSF Department of Radiation Oncology - Spinal Metastatic Cancer

Our Team: Evan Chen 

Goal: At UCSF, the student engaged in medical image preprocessing and deep learning (image segmentation) utilizing Python, SQL, Linear/Logistic Regression, more advanced Machine Learning, and Radiation Oncology treatment planning software.

UCSF Department of Radiation Oncology - Auto-planning Radiosurgery

Our Team: Sicheng Zhou, Christopher Pang

Goal: At UCSF, students built a data pipeline to automatically generate datasets for cross-validation by pulling samples from main dataset. They developed deep learning solutions to generate high quality synthetic x-ray images from Digitally Reconstructed Radio-graphs (DRRs) images using Cycle-Consistent Generative Adversarial Networks (CycleGAN), which improves middle frequency power, an image quality score, by 20% on average compared with baseline Histogram Matching. This model could improve real-time x-ray imaging tracking during radiation therapy. They also visualized and compared synthetic x-ray images and Fourier Analysis results using customized HTML and Jinjia tem-plates with Flask framework and presented the results to principle investigators.

UCSF Division of Hospital Medicine - Hospital Stays

Our Team: Patrick Poon, Boliang Liu

Goal: Students at UCSF collaborated with UCSF researchers to feature engineer and query patient's information using SQL and Spark. With the data, multiple machine learning models were used to forecast the need of the administration of antibiotics for these patients in 2-3 days using information from the first 24 hours utilizing Logistic Regression, Random Forest, XGBoost, and neural networks in PyTorch.


Our Team: Efrem Ghebreab, Anawat Putwanphen

Goal: Students at Virgo developed a classification system for Ulcerative Colitis and Crohn's Disease utilizing deep learning and video image processing techniques.

W.L. Gore & Associates - Project 1

Our Team: Youchen Zhang, Kristofor Johnson 

Goal: Students at W.L. Gore & Associates deployed Deep Learning Computer Vision techniques with Python's PyTorch package to segment microscopic images. They also built a Python package for internal deployment to easily train new models and architectures on different hyperparameters.

W. L. Gore & Associates - Project 2

Our Team: Grant Phillips, Stephen Embry

Goal: Students at W.L. Gore developed deep learning models to perform image classification, image segmentation, and keypoint detection on cornea image datasets using PyTorch.

W. L. Gore & Associates Project 3

Our Team: Luke Thomas 

Goal: At W.L. Gore, the student built a table extraction and merger system leveraging an AWS service for OCR, and IPython Widgets as a GUI.


Our Team: Zachary Dougherty

Goal: At Wanamaker, the student developed architecture for analyzing and preprocessing Google Analytics data through a Markov chain attribution model.

Washington State University Basketball

Our Team: Kyle Brooks, Joshua Majano

Goal: Students at Washington State University utilized web scraping technologies to scrape international league data to be utilized in a model to predict an international player's projected performance in the NCAA. Additionally, they built out models to predict the same performance metric for NCAA transfer players.


ABC News

Our Team: Daren Ma, Ming-Chuan Tsai, Haree Srinivasan

Goal: Students at ABC News used Python to write a machine learning model to predict election results and used Docker and AWS to deploy the pipeline.

Accountability Counsel

Our Team: Jacob Goffin

Goal: At Accountability Counsel, Jacob created web-scraping scripts in Python & Selenium to build a first-of-its-kind database of human rights complaints. He also built a document-search (using Django/ElasticSearch) on thousands of .pdf documents, allowing users to quickly find relevant human rights cases to support their research.


Our Team: Ivette Sulca, Hoda Noorian

Goal: Students at Airbnb developed an evaluation tool prototype that identifies socioeconomic bias on Airbnb algorithms and experiments. They analyzed past A/B tests and built a dashboard using Python and Superset.


Our Team: Esther Liu, Jack Dong

Goal: At Beam Solutions, students used machine learning techniques to classify transaction data and perform text clustering. They also worked on industry research and database mapping for potential new customers.


Our Team: Hannah Lyon

Goal: At Cuyana, Hannah used Markov chains to develop a data-driven marketing attribution model that informed marketing spend. She created a customer propensity model using gradient boosting to determine critical site features that were then enhanced by the digital team to improve conversion. Additionally, she combined SQL and Tableau data for ad-hoc analysis of payment methods, trained neural networks to produce product embeddings used for a recommendation system on website product pages, and modeled repeat purchaser behavior predicting second purchases.


Our Team: Maxine Liu, Zhentao Hou

Goal: Students at Eventbrite built a classifier and a deep learning model to improve event recommendations. They also researched cases for and against investing in online events from the perspectives of opportunity size, product data, and potential revenue impact. On another project, they analyzed text data with NLP libraries to identify features that are indicative of event listing quality.


Our Team: Kevin Wong

Goal: At Faire, Kevin developed a SQL-based outlier flagging mechanism. Additionally, he conducted a deep-dive analysis of the effectiveness of the Faire mobile app on retailer behavior using SQL, python, statistics, and propensity-score matching.


Our Team: Peng Liu, Wenjie Duan

Goal: Students at FLYR developed a SQL/python workflow that predicted flight revenue by finding similar flights with clustering and Random Forest models.


Our Team: Vivian Chu

Goal: Vivian worked with FracTracker on the collection and aggregation of oil and gas data for the state of California, before conducting production analysis of oil wells at the pool level. Financial data was then added to predict the status of each of the oil wells as an asset or liability.

Golden State Warriors

Our Team: Kyrill Rekun, Xueying Li

Goal: At the Golden State Warriors, students used machine learning techniques to create a last-minute ticket buyer model that predicts the probability of a person being a last-minute, planner, or in-between buyer. Using the lifetimes Python package, they built a proxy lifetime value spend model for customers to aid in marketing and ticket targeting. These projects utilized tools such as Pandas, Seaborn, and sklearn.

Gore Medical

Our Team: Peng Liu, Wenjie Duan

Goal: Students at Gore Medical developed PyTorch CNN models using the API to detect key points in medical optical coherence tomography images, thus allowing for automated assessment of an implant. They achieved these results using transfer learning and data augmentation.


Our Team: Ariana Moncada, Matthew Sarmiento

Goal: At Hohonu at the University of Hawaii, students created a tidal forecasting pipeline that helps populate a Django web application and Plotly plots for forecasts. They clustered multiple time series datasets together to increase the performance of their multivariate time series models in R and Python.

Human Rights Data Analysis Group (HRDAG)

Our Team: Bing Wang

Goal: At the Human Rights Data Analysis Group (HRDAG), Bing gleaned critical location of death information from unstructured text fields in Arabic using Google Translate and Python Pandas, adding identifiable records to Syrian conflict data. She wrote R scripts and bash Makefiles to create blocks of similar records on killings in the Sri Lankan conflict to reduce the size of search space in the semi-supervised machine learning record linkage (database de-duplication) process.


Our Team: Shreejaya Bharathan, Geoffrey Hung

Goal: Students at Manifold developed a Python library that utilizes machine learning and deep learning to solve for the parameters of dynamical systems defined by differential equations using PyTorch, Docker and MLFlow.


Our Team: Matthew King, Lin Meng

Goal: At Metromile, students created a crash classification model to predict the primary point of impact during a collision using telematics data collected from customers. On another project, they used deep learning to classify images of fraudulent cars.

New York Mets

Our Team: Rushil Sheth

Goal: At the New York Mets, Rushil created infield and outfield shift models using multivariate distributions, powerful classifiers (RF and XGboost) and clustering.

Metropolitan Transportation Commission (MTC)

Our Team: Kamron Afshar, Michael Schulze

Goal: Students at MTC used deep learning to train a Neural Net Image Classifier on images of buildings to classify their use. They generated the data set using Google API. They also built a Selenium crawler data pipeline that scrapes legal codes and collected them in a Redshift database to track changes.


Our Team: Lisa Chua, Shane Buchanan

Goal: At NakedPoppy, students improved the recommendation system for new customers by incorporating content-based and collaborative filtering trained on clickstream data. They used NLP techniques to extract key aspects from Google reviews and implemented feature-based opinion mining on product reviews to assist in the scoring of new products. Later, they conducted market basket analysis on transaction data to provide customers with “pair with” recommendations and increase engagement.

Baltimore Orioles

Our Team: Collin Prather

Goal: At the Baltimore Orioles, Collin implemented a Deep Recurrent Survival Analysis model (LSTM in PyTorch) to predict the probability that an American League manager will remove their pitcher using in-game time series data. Another prominent project was developing a model to predict relief pitchers’ level of fatigue, then deploying a containerized (Docker) web application on AWS to host the model and explanatory visualizations to communicate the analysis to key stakeholders in the Orioles front office.


Our Team: Kathy Yi, Sean Sturtevant, Jingwen Yu, Nithish Kumar Bolleddula

Goal: Students at PG&E used SQL, Python and AWS Sagemaker to employ machine learning techniques to predict whether or not a PG&E asset is likely to experience a failure. On another project at PG&E, students built computer vision models on drone imagery to identify defects in power grid lines.


Our Team: Nicholas Parker, Mundy Reimer

Goal: Students at Phylagen worked on projects with data from microbiome samples and laboratory processes that involved software development, data analysis, and machine learning.

Pocket Gems

Our Team: Qingmengting Wang, Tian (Arthur) Qin

Goal: At Pocket Gems, students completed two NLP projects using LSTM and Dialogflow.

Propellor Health

Our Team: Andrew Eaton, Xuxu Pan

Goal: Students at Propellor Health built a Random Forest model to predict how long it would take to solve a customer support ticket using word embeddings from the ticket texts and a Continuous Bag of Words (CBOW) model. They also published live dashboards with information on ticket counts and complaint rates on a Tableau Server.


Our Team: Yunzheng Zhao, Shishir Kumar

Goal: At Recology, students used linear regression to generate route statistics and service time estimation from GIS and trash collection data. They also analyzed routing data and identified anomalies in the reporting and data-capturing process.


Our Team: Kevin Loftis, Esme Luo

Goal: Students at Reddit worked on graph-based subreddit community detection. They developed a subreddit graph based on user view overlap and performed community detection on graph to cluster similar subreddits using Python and NetworkX. This doubled the subscription rate of subreddits compared to the existing system. On another project, they worked on a streaming feature extraction pipeline where they ​architected and developed a Flink streaming data processor in Scala using Docker, Flink, Kafka, Circle CI, and Kubernetes.


Our Team: Meng Lin, Hao Xu

Goal: At Reputation, students used entity matching in deep learning for matching addresses and performed topic modeling to analyze topic trends in reviews.

Salk Institute for Biological Sciences

Our Team: Alaa Abdel Latif, Annette (Zijun) Lin

Goal: Students at the Salk Institute for Biological Studies built super-resolution deep learning models using and PyTorch.

Sparta Science

Our Team: Sunny Kwong

Goal: At Sparta Science, Sunny worked on improving the reliability of balance tests by performing multiscale entropy analysis with R and Python on force plate scans.

Specialty's Cafe & Bakery

Our Team: Jiaqi Chen, Sakshi Singla

Goal: At Specialty's Cafe & Bakery, Jiaqi performed revenue forecasting employing time series analysis and EDA and also worked on building a recommendation engine using machine learning.

Stanford Graduate School of Business

Our Team: Jingxian Li

Goal: Students at the Stanford Graduate School of Business cleaned SEC 10-K documents and built word2vec models based on this corpus. They also came up with different ways to evaluate models and learned to use the BERT model.


Our Team: Lea Genuit, Alan Flint

Goal: At Trulia, Lea employed deep learning techniques using Pytorch to identify rotated scanned documents by a factor of 90 degrees. She also implemented an improvement of the current solution (Tesseract, an OCR engine) by working on a patch of the image using Python. Then, she compared the results of Tesseract and the CNN models. On another project at Trulia, Alan built a power analysis tool in Python for Trulia's A/B testing platform. This entailed coding and deploying an ETL pipeline and designing an interactive application using Streamlit. His second project involved employing an interpretable machine learning model to identify site features that influence positive outcomes for interested home buyers.


Our Team: Dillon Quan

Goal: At TruStar, Dillon built parsers to normalize data ingested into the data lake to centralize samples into one format for predictive analytics usage downstream using Spark and Scala. His second project focused on analyzing URLs and how to generate scores to determine their level of maliciousness using Python and Pytorch.

UCSF Brain Networks Laboratory

Our Team: Qingyi Sun, Akanksha

Goal: Working with the Brain Networks Laboratory at UCSF and the Wicklow AI in Medicine Research Initiative (WAMRI), students focused on characterizing diseases, such as Autism and Alzheimer’s disease, making diagnosis and prognosis from multi-channel brain Magnetoencephalography (MEG) data. They built an LSTM (Long Short-Term Memory) model using PyTorch to analyze brain MEG data and extract information to make predictions on characteristic parameters of interest. On another project, they worked on pretraining 3D Convolutional Neural Networks with brain MRI data. The models were pretrained using a segmentation task.

UCSF Bakar Computational Health Sciences Institute

Our Team: Linqi Sheng

Goal: Working with UCSF and the Wicklow AI in Medicine Research Initiative (WAMRI), Linqi built an LSTM (Long Short-Term Memory) model using PyTorch to analyze brain MEG data, extract information, and make predictions on characteristic parameters of interest.

UCSF Radiation Oncology Department the Wicklow AI in Medicine Research Initiative (WAMRI)

Our Team: Roja Immanni

Goal: Working with the UCSF Radiation Oncology Department, Roja found that medical image datasets are fundamentally different from natural image datasets in terms of the number of available training observations and the number of classes for the classification task. She hypothesized that compared to architectures used for natural images, those needed for medical imaging can be simpler. She proposed smaller architectures and showed how they perform similarly while significantly saving training time and memory. This is joint work with Gilmer Valdes at UCSF.

UCSF and the Wicklow AI in Medicine Research Initiative (WAMRI)

Our Team: Zachary Barnes

Goal: Working with UCSF and the Wicklow AI in Medicine Research Initiative (WAMRI), Zachary used UCSF's Spark environment for EHR data to create a data set, generate labels for hospital acquired sepsis patients, and create prediction models using sklearn and Pytorch.

UCSF Morin Lab and the Wicklow AI in Medicine Research Initiative (WAMRI)

Our Team: Sihan Chen

Goal: Working with the Morin Lab at UCSF and the Wicklow AI in Medicine Research Initiative (WAMRI), Sihan built a 3D Residual U-net to precisely segment metastases from brain MRI images with PyTorch. He evaluated the effects of number, size, and locations of metastases on the accuracy, which has resulted in a scientific conference presentation and a manuscript and helped UCSF design a state-of-the-art model.

Vasant Lab at UCSF and the Wicklow AI in Medicine Research Initiative (WAMRI)

Our Team: Shrikar Thodla

Goal: Working with the Vasant Lab at UCSF and the Wicklow AI in Medicine Research Initiative (WAMRI), Shrikar worked on multiple projects. These included using deep learning to segment and classify medical images, attempting to generate 3D images from multiple 2D image views, leading migration of full-stack components from GCP to IBM, detecting accidental rotations in images using CNNs built in PyTorch, and optimizing code to read images from a database.

United Healthcare

Our Team: Srikar Murali, Sean Tey

Goal: Students at United Healthcare cleaned and processed millions of insurance claims transactions with SQL and did hypothesis testing on demographics-related data. On another project, they predicted members who are likely to be hospitalized in the near future as part of a system for identifying administratively complex members with a Gradient Boosting Trees model using the CatBoost library.


Our Team: Andrew Young, Charles Siu

Goal: At Valimail, students tackled the problem of classifying a backlog of 100K+ unknown internet domains generated by Valimail Defend. They developed an end-to-end machine learning pipeline that classifies trusted domains by detecting whether they belong to low-risk categories such as real estate. The Gradient Boosting Machine (GBM) model achieved a 95%+ precision rate with test data when classifying real estate domains using Natural Language Processing (NLP) for web content analysis. On another project, they designed and implemented REST APIs using Flask in Dockerized modules in the pipeline and built web scrapers using BeautifulSoup to gather multiple external data sources for ML model training.


Our Team: Mikio Tada, Stephanie Jung

Goal: Students at Virgo developed a Python script to extract data frames from 120 hours of video. They used Google AutoML to train deep learning models to automate video recording during endoscopic medical procedures and to develop an automatic procedure type tagging system. On another project, they built a prototype object detection tool for real-time polyp tracking during a colonoscopy using CVAT for data labeling and Google AugoML to train the deep learning model.

Walmart Labs

Our Team: Samarth Inani, Akansha Shrivastava

Goal: At Walmart Labs, students developed an image inpainting tool to remove occlusions from high-resolution furniture images using partial convolutions. They also worked on a research-oriented project to enhance the color detection algorithm to improve the accuracy of the color attribute in the product description of furniture listed on using Pytorch and Open-CV.

Wicklow AI in Medicine Research Initiative (WAMRI) and MedStar Georgetown University Hospital

Our Team: Max Calehuff, Xintao (Todd) Zhang, Wendeng Hu

Goal: Students working with the Wicklow AI in Medicine Research Initiative (WAMRI) and MedStar Georgetown University Hospital used NLP to create an automated grading program for medical student imaging reports.


Our Team: Andy Cheon, Aakanksha Nallabothula Surya

Goal: At Zyper, students built and deployed an image classification convolutional neural network (CNN) with PyTorch to help brands efficiently recruit fans with desired aesthetic types on social media. They applied feature importance methods using machine learning in Python to identify top factors that drive engagement rates of user-generated content. They also developed a user location prediction pipeline using NLP tools (NLTK, spaCy) to improve upon the existing location predictor and discovered and visualized trends from group chat content from 15 brand communities using mainly Pandas and ggplot.



Our Team: Sankeerti Haniyur

Goal: On this project, the student employed deep learning & NLP techniques to automatically tag cybersecurity documents. She then built a named entity recognition model to detect indicators of compromise in the documents.

Beam solutions

Our Team: Darren Thomas, Liying Li

Goal: Students employed NLP techniques in Python for name recognition and used Pytorch and an LSTM to detect fraudulent transactions. On another project, scraped data using restful API, creating an application using Flask in Python. They also applied unsupervised machine learning models to build clustering and anomaly detection models using Python.

General electric

Our Team: Benjamin Khuong, Ziqi Pan

Goal: Students worked on an object detection project to detect defects in CT scans of machine parts. Their project was focused on designing computer vision based solutions for automatic defect-detection on industrial devices. They implemented state of the art deep learning algorithms such as Faster R-CNNs, R-FCNs, and 3D convolutional neural networks.

bolt threads

Our Team: Wenkun Xiao, Nicole Kacirek

Goal: Students worked closely with the marketing team to optimize campaign messages by applying NLP and machine learning techniques to competitors’ product reviews and social media posts. They also built and productionised a CLTV (customer lifetime value) and revenue prediction model which was put into production.

Check point/Dome9

Our Team: Brian Chivers, Evan Liu

Goal: Students developed an unsupervised learning algorithm to detect anomalies in AWS network traffic.

Our Team: Rebecca Reilly, Minchen Wang

Goal: Students focused on increasing revenue using topic modeling, employing Python and the spaCy library to discover industry relationships using advertiser behavior. They employed machine learning technologies to predict online ad prices and identify important features. On another project, they created an NLP classifier to correctly identify acceptable and appropriate sentences.


Our Team: Nan Lin, Lance Fernando

Goal: Students built machine learning models to predict the LTV (lifetime value) of customers. On another project, they deduplicated over 5 million venue addresses using fuzzy string similarity metrics and a HMM, then utilized this data to create a search ranking method to recommend venues to event creators.


Our Team: Aditi Sharma, Zhi Li

Goal: Students built a content-based recommendation system for cars and employed auction price prediction.


Our Team: Byron Han, Yuhan Wang

Goal: Students used SQL to extract data from AWS, then employed NLP techniques to build a text classification pipeline.


Our Team: Connor Swanson

Goal: The student built anomaly detection systems in Python for environmental data. He also built time series forecasting models to predict future environmental shifts and built dashboards to host their findings.


Our Team: Tyler Ursuy, Anush Kocharyan

Goal: Students classified each Kiva partner into risk categories by implementing a Random Forest risk detection model that monitors the financial, geographic, and economic information of Kiva’s global partners. They also built an interactive online dashboard to provide easy access to data analyses, data visualizations, and model predictions which will help Kiva reduce the amount of time and money spent on manually inspecting partner information and conducting scheduled in-person visits.

kwh analytics

Our Team: Hongdou Li, Zhe Yuan

Goal: Students employed machine learning techniques to predict solar panel performance across the country and provided business inference.


Our Team: Hai Le, Jon-Ross Presta

Goal: Students automated the data generation process for a dashboard with a Python script. They also trained an NLP model which takes the subject line, information about the app that sends the email, and information about the recipient segment to predict email open rates using PyTorch. On another project, the students used Python/PyTorch to build an NLP model to predict user engagement based on message content.

manifold ai

Our Team: Edward Richard Owens, Prakhar Agrawal 

Goal: Students created a system that optimizes the operation of HVAC systems by detecting the stabilization of building temperature from sensor data. On another project, they built a golf simulator with the model utilizing a video of a person hitting a golf ball and outputting the ball’s trajectory using machine learning and physics. They employed methods and architectures such as background removal, darknet (YOLO) and optical flow for computer vision.


Our Team: Shivee Singh, Xiao Han

Goal: Students used machine learning and deep learning to identify microplastics in the ocean water using OpenCV Python and PyTorch. Their main focus was to build object detection models trying to locate microfibers from underwater images to approximate the total volume and distribution of microfibers in the ocean.


Our Team: Christopher Olley, Wei Wei

Goal: Students used machine learning and deep learning to identify drivers based on their telematics data (speed and acceleration). On another project, the students extracted events and created features based on this data to train tree based models using Python. They extracted labeled trip data from SQL and Amazon S3 storage and built the ML/DL models to identify users using Python and SQL.


Our Team: Sarah Melancon, Brian Wright

Goal: Students used Python and Spark to combine and aggregate add-on related data from a variety of data sources into a single data source. They also built a dashboard based on this data source using Redash. The students built an ETL pipeline that aggregated several data sources into one combined dataset.

metropolitan transportation commission

Our Team: Jacques Sham, Quinn Keck

Goal: Students built a data lake on AWS, involving S3 and Redshift, using tools available in the market (Trifacta and Python). On another project, they analyzed Clipper and FasTrak data, tracked key performance indicators, and built dashboards. They developed machine learning and times series models to predict daily Clipper Card usage within 4%.

Delta Analytics

Our Team: Chong Geng

Goal: The student developed metrics to define the success of the product in terms of user engagement and answering efficiency. He also applied NLP techniques to upgrade the recommender system and built a dashboard to visualize the results.

naked poppy

Our Team: Nina Hua, Donya Fozoonmayeh

Goal: Students employed machine learning for product recommendations and used PySpark to apply a model in a distributed environment. They also implemented machine learning techniques to classify skin color from an image and worked a recommendation system to improve user experience.

Orange Silicon Valley

Our Team: Evan Calkins, Jinghui Zhao, Ran Huang

Goal: Students developed an algorithm to support targeted marketing campaigns, which identifies similar mobile users based on their location patterns. They built an n-gram language model for the African language of Wolof to improve functionality of a chatbot using Python. On another project, they calculated relative store location optimality by comparing user movements and travel patterns using a large dataset (4TB) of mobile user information processed on a 9-node Spark cluster.

Pacific electric and gas company

Our Team: Gokul Krishna Guruswamy, Louise Lai

Goal: Students used PyTorch to train deep learning object detection and classification models to identify faults in equipment and to detect small-scale objects in millions of large drone images. They worked extensively in AWS cloud environment (EC2, S3, lambda, SageMaker, etc.) to productionize these models.


Our Team: Paul Kim, Katja Wittfoth

Goal: Students used deep learning techniques to identify different types contaminants in waste bins. They also automated identification of contaminants in complex images of waste bins by developing a multi-label image classification model using deep learning, Pytorch, Python, and AWS.

Recology (Routes)

Our Team: Xu Lian, Philip Trinh

Goal: Students built a machine learning model to predict a truck's accident occurrence using Sklearn. They used data analytics and machine learning methods to provide policy recommendations on how Recology can increase safety when collection drivers are out in the city. They also merged sheets from different sources using Pandas and PySpark.


Our Team: Yixin Sun, Julia Amaya Tavares

Goal: Students built a machine learning pipeline on Airflow to estimate subreddit retention ability. They used Python spaCy package to build a small tool to extract keywords from post comments. On another project, they used TensorFlow to create a multi-label classifier for post titles, and SQL / Pandas for data acquisition and pre-processing.

Our Team: Randy Ma, Xi Yang

Goal: Students developed a review sentiment classifier using a deep learning model with LSTM and Self-Attention to improve reputation assessment (Python, PyTorch). They extracted customer concerns by building a multi-gram keyword extraction tool using syntactic dependency analysis. They also built an automated operational insight reporting tool (SQL, Python) to assess strengths & weaknesses of the client’s user experiences.

San Francisco county transportation authority

Our Team: Crystal Sun, Marwa Oussaifi

Goal: Students created web-based visualization tools for presenting the number of accessible jobs and trip patterns within San Francisco with D3.js. They automated complex data preprocessing and data pipelines to accommodate different scenarios when collecting, processing and piping the data using python. On another project, they implemented different ML algorithms to predict auto ownership per household.

Our Team: Xinran Zhang, Zitong Zeng

Goal: Students developed a Scala notebook to help the customer service team analyze user-retention metrics such as DAU and Return Retention. They provided an anonymization routine for sensitive impressions and events data using Spark UDF and Murmurhash3. They explored alternatives to traditional parametric tests to improve the performance credibility of A/B test analysis. They also researched and implemented outlier detection methods in Scala.


Our Team: Xinke Sun, Jyoti Prakash Maheswari

Goal: Students used SQL to track KPIs and built tables to store daily metrics using Python. The students applied deep learning techniques to understand the content of real-estate listings consisting of images and text and to predict lead submission.

trustar technology

Our Team: Viviana M. Peña-Márquez, Neha Tevathia

Goal: Students built an NLP model to identify the malware names using CBOW model and leveraged the open source data from Twitter. They used Pytorch to build the CBOW model. Created and implemented pipeline to automatically collect tweets using Twitter’s API, applied machine learning and natural language processing algorithms to detect entities, and feed daily detections to a dashboard.


Our Team: Tian Qi, Jessica Wang

Goal: The students deployed a machine learning pipeline to predict the paid users within the next two weeks using Python and SQL. In another project, the students predicted short term purchase using Python.


Our Team: Jenny Kong

Goal: The student used machine learning with fMRI data to classify network patterns of concurrently activating brain regions that arise during successful high-fidelity memory retrieval.


Our Team: Miguel Romero Calvo

Goal: The student employed deep learning techniques to improve the performance of Neural Networks in small data. He also conducted research on training and transfer learning methodologies.

UCSF Department of radiation oncology (computer vision lab)

Our Team: Anish Dalal, Robert Sandor

Goal: Students employed deep learning techniques in computer vision to accurately segment ventricles in the brain using Pytorch. On another project, they built a text classifier that predicts cancer patient survival from physician notes using Python, PyTorch, Bash, and FastAI.

Ucsf department of radiation oncology (quantitative imaging lab)

Our Team: Alan Perry, Tianqi Wang

Goal: Using Python, students employed deep learning techniques to make segmentation of different organs, to make dose volume diagnosis, and to achieve MRI to CT images transformation.

UCSF Division of Cardiology (Arnaout Laboratory)

Our Team: Max Alfaro, Divya Bhargavi

Goal: Students built deep learning models to classify different views of echocardiograms. They performed exploratory data analysis to become familiar with medical terminology.

Ultimate software

Our Team: Victoria Suarez, Harrison Mamin

Goal: Students built recommender system to predict which matched candidates to job posting using Python, which improved recruiters' efficiency by 56%. They researched methods of detecting unconscious gender bias in performance reviews using word embeddings and neural networks. On another project, the students worked on two approaches to extract causal language pairs from text; one using a deterministic rule-based engine and one using a neural network, integrating them into a web-based UI using Flask.

Under Armour

Our Team: Adam Reevesman, Meng-Ting Chang

Goal: Students built a rule-based algorithm to identify when a user finished a route but forgot to stop their tracker in the MapMyFitness app using Python. They also preformed functions related to EDA.


Our Team: Tomohiko Ishihara, Maria Vasilenko

Goal: Students gathered user reviews on Personal Health Record apps on Apple App Store and Google Play Store and used Latent Dirichlet Analysis to try to see what app features users talk about most. They built models to predict whether a member is likely to get pregnant by creating a data set, performing feature engineering and building machine learning models. On another project, they collected user reviews from GooglePlay and Appstore and performed topic modeling (LDA) as implemented in Gensim.


Our Team: Joy Qi, Jialiang Shi

Goal: Students built machine learning classification models to identify lists of legitimate email domains versus fraudulent email domains. They employed machine learning techniques to classify whether an unknown domain is trusted or untrusted. On another project, they created scraping script to scrape social links on web pages.

Valor water analytics

Our Team: Yihan Wang, Jian Wang

Goal: Students predicted water utility customer nonpayment with a Random Forest model and implemented the model in Python into Valor’s codebase. They segmented utility customers with K-means clustering to understand their behavior. On another project they applied multiple time series model for identifying malfunctioned water meters. They used SQL and Python to build end-to-end workflow for the project.

Vida Health

Our Team: Shulun Chen

Goal: The student used SQL, Python, and Swagger to build data pipelines.

Wiser Solutions

Our Team: Ziyu Fan

Goal: The student applied data science and machine learning techniques to forecast E-commerce retailer sales using Python. On another project, she used machine learning and NLP to find anomalies in product matching.

Zume Pizza

Our Team: Brian Dorsey, Fiorella Tenorio

Goal: Students used Python, TensorFlow, and Time Series demand prediction models. They worked on a model to predict the probability of client purchases and a demand prediction model.


Capital One

Our Team: Arpita Jena, Devesh Maheshwari, Alexander Howard

Goal: Students employed NLP and deep learning techniques to classify sensitive information in Capital One's internal domain using Python.The result was wrapped in a Flask web app. Another project involved software engineering with the goal of automating Capital One's AWS authentication process.

Cogitativo, Inc

Our Team: Yiqiang Zhao, Gongting Peng

Goal: Students employed machine learning methods to build a data pipeline for anomaly detection. They also used Python for data exploration.

Delta Analytics

Our Team: Stephen Hsu

Goal: Students worked within a multidisciplinary team to offer data science services to a nonprofit organization. Specifically, students developed an NLP-based model in Python to classify forum posts so that forum questions could be appropriately matched with professionals who are best positioned to answer them.


Our Team: Timothy Lee

Goal: Students did data pipeline work using the Python API service. Their work involved classification of PDF files using Python XGBoost and the collecting of research data samples using Python.


Our Team: Holly Capell Students at Eventbrite used machine learning in Python to model ticket sell-through rates in order to help the company identify platform features that drive event sell-out. They performed cohort analyses using Python to help understand the revenue life-cycle of Eventbrite customers and investigated seasonality in ticket sales, using SQL to query data and R to create data visualizations.

First Republic Bank

Our Team: Bingyi Li, Christopher Csiszar

Goal: Students built a web-based system to classify municipal bonds in order to assure government compliance using Python and Flask. They used big data analytics, machine learning and clustering algorithms to automate the classification of the bank's municipal bond portfolio into High Quality Liquid Asset bonds. This work replaced the need for inefficient and costly external consultants to perform this task quarterly.


Our Team: Yue Lan, Akshay Tiwari

Goal: Students wrote SQL scripts to perform exploratory data analysis and built a data pipeline to ingest airline customer data. They also employed machine learning techniques to build and validate models using python to predict bookings and cancellations of airline tickets as part of the Flyr airline revenue management system They also worked on another project that used machine learning techniques to predict customer budget and price sensitivity.

Houston Astros

Our Team: Jake Toffler

Goal: Students clustered individual pitchers' pitches by pitch type using level-set trees, a density-based clustering method, in Python.

Isazi Consulting

Our Team: Shikhar Gupta, Fei Liu

Goal: Students used deep learning CNN techniques to identify diseases in chest X-rays.


Our Team: Ting Ting Liu, Jose Antonio Rodilla Xerri

Goal: Students employed machine learning techniques to identify relevant factors that may affect whether or not a Kiva loan will reach full funding. They developed a web application powered by a random forest model in order to predict the success of loans, highlight which factors are driving those loans, and provide suggestions on how to improve them.


Our Team: Vinay Patlolla, Jason Carpenter

Goal: Students worked on two projects with Manifold. In the first project, they used machine learning models such as Logistic Regression, Random Forest and XGBoost to detect faults in oil pipeline using Python. In the second project, they developed a multi-camera multitracking pipeline to track people in a scene using deep learning and clustering techniques.


Our Team: Chenxi Ge

Goal: Students worked on a complex computer vision problem using deep learning with the goal of locating characters to decode the character sequence.


Our Team: Tyler White, Jing Song

Goal: Students used Spark to obtain data to build a public-facing Firefox Health report dashboard. They used time series analysis to predict ESR usage and checked the validity of t-tests with non-parametric tests.


Our Team: Danai Avgerinou, Shannon McNish

Goal: Students worked on a data engineering project to build a small centralized data warehouse to host MTC's data. They also worked on a data science project using NLP with FastTrak survey data and made discoveries involving ridership patterns of Clipper users.


Our Team: Natalie Ha, Christopher Dong

Goal: Students built a text classification model to categorize survey responses and found correlations with NPS. On another project, they built a Tableau dashboard for funnel analysis on reported content in the platform. They also built and deployed (with Airflow) a machine learning model using Spark ML to predict survey text responses and created complex SQL queries to calculate metrics regarding content moderation.


Our Team: Guoqiang Liang

Goal: Students employed machine learning techniques to assign probabilities of churn using Python and Spark. On another project, they used NLP techniques to classify legal documents.

Our Team: Ernest Kim, Davi Alexander Schumacher

Pocket Gems

Our Team: Dixin Yan, Spencer Stanley

Goal: At Pocket Gems, students employed machine learning techniques to build a churn model and a matchmaking model for a newly developed game. They also researched and developed models to help the marketing team with channel attribution and creatives optimization. On another project, they used time series methods to predict the impact of paid advertising channels on organic install volume.

Price F(x)

Our Team: Neerja Doshi, Alvira Swalin

Goal: Students employed machine learning (Python) and deep learning (PyTorch) techniques to build a product recommendation system.


Our Team: Khoury Ibrahim, Danielle Savage

Goal: Students used deep learning techniques to build a multi-label image recognition CNN using PyTorch to identify contaminants in images of landfill, recycling, and compost in Recology's images of waste.

Our Team: Sara Mahar, Nicha Ruchirawat

Goal: Students automated the real-time detection of a data feed failure from Google, Bing and Facebook sources using a suite of standardized hypothesis tests. On another project, they identified significant clusters of words from tens of thousands of omni-channel reviews with Latent Dirichlet Allocation (LDA) topic modeling and k-means clustering.

San Francisco 49ers

Our Team: Kishan Panchal

Goal: Students used machine learning techniques to create a weekly cohort-based churn prediction system for season ticket holders. On another project, they created a data ingestion system to get external ticket data into the team's data warehouse.

San Francisco County Transportation Authority

Our Team: John Rumpel, Kaya Tollas

Goal: Students used Python to compute accessibility metrics for transit stops (this was later used in their study on TNCs and ridership). On another project they prepared data for input into the SFCTA travel model. And on another project they visualized traffic incidents with an interactive map using javascript.


Our Team: Mathew Shaw, Cara Qin

Goal: Students employed machine learning techniques to identify suspicious users, predict LTV, and classify game themes.


Our Team: Daniel Grzenda, Jade Yun

Goal: Students employed graph theory to quantify variants and analyze protein data from the blood of patients using Python.


Our Team: Nimesh Sinha, Zizhen Song

Goal: Students used natural language processing and machine learning techniques to build a data pipeline recommendation engine. On another project, they worked on clustering customers based on login data.

Stanford Graduate School of Business

Our Team: Ker-Yu Ong, Chen Wang

Goal: Students compared cloud databases (AWS, Google Bigquery, Snowflake and Databricks) by running benchmarking queries for research use cases. They also ran machine learning models to classify WSJ articles and used NLP techniques to extract information from news articles and identify topics in Amazon product reviews.


Our Team: David Kes

Goal: Students developed an exponentially weighted moving average (EWMA) control charting scheme to detect bus detours for a variety of transit agencies using Python. The algorithm was used to help automate the customer success team's process for detecting defaults in any transit agencies systems.


Our Team: Thy Khue Ly, Beiming Liu

Goal: Students used machine learning to predict default risks of customers and also to cluster them into groups based on their credit card transactions using Python. On another project they used NLP to predict transaction categories, and on a final project they used time-series and machine learning to predict user annual income with transactional data.


Our Team: Feiran Ji, Lingzhi Du

Goal: Students predicted users’ purchasing behavior for future games using machine learning techniques and deployed an end-to-end pipeline to put the model into production on Hadoop clusters using Spark. Additionally, they visualized insights and developed an interactive dashboard to be used in conjunction with the predictive model.


Our Team: Siavash Mortezavi, Kerem Can Turgutlu

Goal: Students used traditional machine learning techniques to predict overall survival of meningioma cancer patients and used deep learning and computer vision to automatically segment brain structures.


Our Team: Sangyu Shen, Qian Li

Goal: Students employed machine learning techniques to classify patients with side effects from radiation therapy using Python.

Under Armour

Our Team: Ryan Campa, Zhengjie Xu

Goal: Students used machine learning to predict stride and cadence to help runners improve their form. They also used unsupervised learning to identify organized race events from millions of rows of workout data.

United Health Care

Our Team: Savannah Logan, Sooraj Mangalath Subrahmannian

Goal: Students applied NLP techniques in Python to identify the main complaints in a website survey. They then employed machine learning techniques to identify areas of possible improvement in coverage rejection time.


Our Team: Taylor Pellerin, Devin Bowers

Goal: Students employed machine learning techniques to help identify fraudulent email sending behavior. They prototyped internal tooling, documentation, and more. Additionally, they built a machine learning classifier to help identify new legitimate email services. This allows Valimail to quickly scan through email aggregate reports to identify legitimate services that email on a customer's behalf.

Valor Water Analytics

Our Team: Jingjue Wang, Kunal Kotian

Goal: Students trained a recurrent neural network to forecast water consumption and flagged unusual water meter readings by comparing the deviation of forecasts from true values. They wrote production code for a pipeline to extract and transform data, train deep learning models using TensorFlow, and generate forecasts for several water consumption time series.

Vida Health

Our Team: Nishan Madawanarachchi, Chengcheng Xu

Goal: Students predicted weight loss among customers using linear regression with R. On another project, they used logistic regression in Python to predict the urgency level of clients' messages using logistic regression in Python. They also built a chat bot which aimed to help new users with the onboarding process.

Voodoo Sports

Our Team: Ford Higgins, Ian Pieter Smeenk

Goal: Students contributed to a 'football genome' project for stylistic classification of teams using Python. They built a college basketball statistical model that builds on top of existing models in order to improve them and designed tools for football coaches to use to as an aid in scouting opposing teams. These projects were completed using Python, R, SQL and D3.js.


Our Team: Deena Liz John, Patrick Yang

Goal: Students used Python, SQL and Looker to implement A:B testing at Vungle, revolving around the comparison of different ad templates, levels of compression, and more. They also aided in the development of an in-house A:B testing platform.

Wiser Solution

Our Team: Liz Chen, Yu Tian

Goal: Students developed an end-to-end pipeline in Python using computer vision and deep learning technologies for a company promotional product to recognize online promotions from images. On another project, they deployed REST APIs into production and designed experiments to compare the results from different methods.


Our Team: Vanessa Zheng

Goal: Students developed fraud detection models on a high-dimensional imbalanced dataset using Python. On another project, they devised and evaluated global risk metrics to monitor, condition and strengthen fraud models with SQL & Python.


Our Team: Sri Santhosh Hari

Goal: Students used time series techniques to forecast customer churn. Additionally, they used machine learning techniques like Random Forest and XGBoost to identify key features affecting bookings to predict members' likelihood of booking a car.


Aki Technologies

Our Team: Arda Aysu, Joshua Amunrud

Goal: Predict complex human activity using mobile device accelerometer and gyroscopic data and detect possible fraud by analyzing impression level data

Joshua and Arda researched several digital signal processing techniques and strategies for clustering for time series data. In the end, we used Python to produce a random forest model that used processed data to predict the activities. They looked at one month of impression level data and tried to identify publishers with unusual characteristics. This is an ongoing project, but tools for further exploration were built in Python.


Our Team: Cameron Carlin, Mikaela Hoffman-Stapleton

Goal: Forecast ridership by gathering and analyzing external factors relevant to ridership demand

At BART, many factors come into play regarding how, when, and where people decide to take public transportation. With recent changes in the transportation industry and growing competition, it is more critical than ever to accurately forecast ridership to plan finances into the future. Cameron and Mikaela used R to develop a SARIMAx time series forecast model incorporating external factors and government data to determine ridership covariates. This modeling algorithm was implemented in a Shiny application to allow for a wider audience at BART to take advantage of these forecasts.

Capital One

Our Team: Nick Levitt, Kyle Kovacevich

Goal: To build predictive models and ETL pipelines for a cyber security project

Nick and Kyle used a combination of advanced machine learning techniques such as Deep Learning, NLP and network analysis to find outliers and patterns in the data. Work was implemented in Python, PostgreSQL and Spark on top of Hadoop and Parquet.


Our Team: Rui Li, Elise Song

At Clorox we were presented with a business challenge of exploring important factors that correlated with short term sales fluctuations after the breakout of an event. We scraped more than 28 million news titles and 102k full articles relevant to the event, conducted sentiment analyses on 14 million Tweets and Instagram posts for feature engineering, and found significant results from regression analysis. Our presentation was well-received by the product team and the data science team.


Our Team: Keyang Zhang

Goal: Extracting key sentences and detecting signals from news

Keyang built a name entity recognition algorithm in Python to extract the main company name from news. He also used Latent Dirichlet Allocation, Word2vec and FuzzyWuzzy to perform key words and key sentences extraction. Based on the key words and key sentences, Keyang used Gaussian Naive Bayes to build classifiers to detect the signals from each piece of news.


Our Team: Dominic Vantman, Justin Midiri

Goal: Create a Python program that aggregates sales, consumer, and syndicated data into a unified information database and perform advanced analytics on promotional performance and return on investments

Dominic and Justin designed data visualization dashboards to further understand financial performance metrics, customer profitability reconciliation, and promotional trade-spend optimization tactics that yield highest growth across their robust portfolio of customers, products, and geographical markets.

Convergence Investment Management

Our Team: Linda Liu

Goal: Perform exploratory data analysis on different aspects of the financial market and use regression and classification methods to forecast/identify alpha

Linda leveraged ensemble method using stacking and majority vote to detect rare events in the financial market. She also wrote machine learning models that could be deployed into production.

Our Team: Claire Broad

Goal: Identify and rank new or missing words for potential inclusion in the dictionary

Claire developed an autonomous system in Python using sci-kit learn to generate a validity score for the items on the monthly list of unmatched queries on the Dictionary site. Her algorithm incorporated signals from lexical structure, query patterns, and usage on social media, and used a novel ensembling technique to mitigate the effect of noise in the training set.


Our Team: Sheri Nguyen, Keyang Zhang

Goal 1: Build an anomaly detection model that found breakages in affiliate reporting

Sheri and Keyang built an anomaly detection system using a combination of the Bayesian Change Point algorithm and the Twitter Anomaly Detection package by integrating R into their Python programs using RPY2. Their model successfully caught some major partner reporting breakages on various platforms.

Goal 2: Build a daily revenue forecasting model

Sheri and Keyang built a model to predict daily revenue. This was an important implementation for Ebates' marketing team, since their daily data funnel from affiliates were often times delayed, an accurate revenue prediction model was necessary in order to make important weekly business decisions of where to allocate marketing campaigns. They implemented a few different algorithms, including Linear Regression and Random Forest. Their model was put into production with a 5-6% error rate.

Goal 3: Build a model to find which customers should be sent reminder emails to Refer-A-Friend to Ebates

Sheri and Keyang built a model to pick out the most likely customers to refer Ebates to a friend. The Refer-A-Friend program is one of the highest revenue generating programs offered by Ebates. They first filtered out Ebates customers for fraudulent behavior and then assigned probabilities to each customer. The customers with the highest probabilities were then sent an email to remind them about the Refer-A-Friend program offered by Ebates. Sheri and Keyang's model improved Ebates' original classification model performance from 13% true positive detection to 80% true positive detection. Their model is currently being used in production.


Our Team: Kelsey MacMillan

Goal: Improve site search and recommendation by extracting high-level features from event data In addition to organizers that Eventbrite has direct relationships with, there are many individual organizers around the world who sign on to Eventbrite by themselves and create events. Sorting through this large inventory of individually organized events to match attendees to their next experience is a challenge. To help address this challenge, Kelsey implemented an unsupervised topic modeling method called Non-Negative Matrix Factorization that extracts key topic "tags" from events using the raw text from their titles and descriptions. For the always-tricky task of validating an unsupervised method, Kelsey built a different type of topic model using a probabilistic approach called Latent Dirchlet Allocation and checked for stability of the found topics across both types of models.

Our Team: Hannah Lieber

Goal: Help the sales and marketing teams better understand characteristics of their revenue generating organizers. Hannah used Hive and Python to develop a random forest model to classify what organizers are likely to churn, allowing Eventbrite to preemptively take action in retaining these organizers.

First Republic Bank

Our Team: Yige Liu, Anshika Srivastava

Goal: Deposit diversification study and network analysis

Anshika and Yige studied the volatile segments of the deposits to understand if increase in segment balance leads to moderation in volatility. They also used graph theory to design the pseudo algorithm to detect households and identify influential people in the bank’s network using the bank’s historical data. They acquired data from multiple servers and databases using SQL (SQL server) and performed the analysis using Python Pandas and Matplotlib.


Our Team: Graham McAlister, Derek Welborn, Yixin Zhang

Graham built a predictive anomaly detection algorithm by implementing an Isolation Forest in Python. The system takes predictions for search demand of flight characteristics and returns the probability that this point comes from the "normal" distribution in the data set.

Derek built a price prediction system for flights. His solution used gradient boosting implemented using SciKit-Learn in Python. The model is hosted in a flask app and is being used by the data science team at Flyr.

Yixin analyzed the tickets that Flyr's customer support deals with to help them better focus their efforts. Her work broke down which partners were most likely to create different issues and how expensive they were to deal with. She visualized this data using both Python's Matplotlib and R Shiny.


Our Team: Su Wang

Goal: Efficiently query, analyze and communicate data to answer business questions

Gyft, a wholly-owned subsidiary of First Data Corporation, is a leading digital gift card platform with a top-rated mobile gift card app for iPhone and Android. With a high-traffic websites and massive amounts of data, Gyft needs data analysts to work with cross-functional teams, efficiently query, analyze and communicate data in a fast-paced Internet business environment. A typical day for a Data Analyst intern at Gyft involves creating and maintaining KPI dashboards, working with different departments to understand business questions, coming up with the right metrics, querying the right data efficiently from database, extracting insights using various statistical techniques, and conveying the right message to the teams. SQL is used frequently, R and Python are used when statistical analysis is needed.

Our Team: Vyakhya Sachdeva, Evelyn Peng

Goal 1: Identify frequently visited places for users and predict commutes between those places

Vyakhya and Evelyn worked on 2 major projects at In the first project, they developed production-ready solution to identify frequently visited places based on mobile/GPS location data using DBScan and Gaussian Mixture clustering algorithms. Given the list of places learned in the previous step, they developed an algorithm to identify commutes between these places. They used logistic regression to predict users’ next destination given a departure place and time. Their implementation improved accuracy of existing system by 30%.

Goal 2: Predict states of different home devices based on sensor data from IoT devices, time, and environment factors

Their second project was related to home device automation, in which they combined time-series data from IoT devices (motion sensors, electric outlets, door locks, etc.), environmental data (temperature, time of day, etc.), and user location, and built machine learning models using neural networks to anticipate users’ needs in an autonomous home. Their model achieved overall accuracy rate of ~80%.

Houston Astros

Our Team: Eric Lehman

Goal: Develop an automated algorithm to characterize the MLB strike zone for different counts and stances

Eric used both machine learning and analytic approaches to model the actual strike given 2015 and 2016 MLB pitch histories. Several different modeling approaches were investigated using Python's scikit-learn package, including LDA, decision trees and gradient boosting. The strike zone was characterized by finding the best superellipse which minimized the misclassification rate for a given count and batter stance (L or R). Detailed visualizations of the strike zone were created using R's Shiny package.


Our Team: Christine Chu, Erin Chinn

Goal: Predict clinical characteristics of breast cancer patients using mRNA expression levels

Precision medicine is an emerging field which decides medical treatment based on a patient’s genomic content. Given the high dimensionality and complex nature of genes and their interactions, neural networks and deep learning are well suited for predictive models involved in precision medicine. Christine and Erin built a multi-task neural network model in conjunction with a denoising autoencoder to predict clinical characteristics based on the expression levels of breast cancer patients. They used multiple libraries in Python (Numpy, Sci-kit Learn, Keras, Theano) to develop and test their models. With their model, they were able to achieve 93% and 82% accuracy in predicting two important clinical features that distinguish between different types of breast cancer cells.

LA County

Our Team: Matt McClelland

Goal 1: Modeling Los Angeles County deed transactions for accurate forecast

The goal of this project was to recreate a time series model provided to LA County by UCLA economist William Yu. The resulting ensemble model uses VAR techniques and Dynamic Regression with numerous autoregressive terms.

The nature of this project required GGplot for the purposes of validation and ease of forecast projection. The actual statistical implementation required various packages combined with custom functions to achieve ensemble forecast results. Further work needs to be done to bring this function in house as a cleaned working product

Goal 2: Cleaning, aggregating and visualizing LA County voting data

As an open-ended exploration into LA County Vote By Mail data, there was much work done to both clean and augment the data. Data augmentation was done using the Google geocoding API and R’s gmap package for lat/lon and distance queries. Voter data was also supplemented by Census data which merged at the census tract level. Using this data, we were able to generate several EDA style reports for LA County’s in-house reference. The visualization was made using Leaflet and Shiny. Currently this is to be an in-house application for LA County, however there is potential to potential to make this public facing.


Our Team: Francisco Calderon Rodriguez

Goal: Build a classification model to predict the likelihood of a customer email being a complaint

Francisco extracted email texts using Python from customer management platform that were formatted in JSON. He collected over 5,000 non-complaint emails and 260 complaint emails and applied Count-Vectorization from Scikit-Learn to generate frequencies for each of the 6,000 features. Modeled features using Logistic Regression with an L1 Penalty to perform feature selection.

Loot Crate

Our Team: Cameron Carlin, Mikaela Hoffman-Stapleton

Goal: Understand customer sentiment and demand to gain insight into future product diversity and customer desires

At Loot Crate, a subscription-based "geek and gaming" memorabilia service, understanding what types of products consumers want and how they feel about the subscription offerings currently available is paramount to success. Cameron and Mikaela used Natural Language Processing (NLP), specifically text analyzers and sentiment analysis, to quantify customer experience and explore trends around historical consumer insights. These results were combined with Naive Bayes Classification and exploratory analysis of historical product offerings to help guide future Loot Crate product curation.

Mindlight Medical

Our Team: Spencer Smith

Goal: Build a web interface for clinics to upload EEG data

Data was parsed then saved in a MongoDB. Spencer developed a new algorithm for classifying developmental trajectories of medical data. He has plans to publish this innovation.


Our Team: Connor Ameres, Andre Guimaraes Duarte

Goal: Create an interactive dashboard of Firefox crash statistics

Andre and Connor used Spark (PySpark + SparkSQL) to create an ETL pipeline that generates a tri-weekly (M, W, F) report of crash analysis on a representative 1% sample of the population from Firefox's release channel on desktop. They used Mozilla's MetricsGraphics.js library (D3) in order to produce an interactive visualization of these data.

In addition, Andre performed several ad-hoc analyses of Firefox user behavior data, such as finding a correlation between heavy users and early adopters using logistic regression. Connor also used various clustering methods and anomaly detection algorithms, like Isolation Forests, to segment users based on their corresponding engagement metrics.

Oakland Athletics

Our Team: Joshua Amunrud

Goal: Predict game-level attendance for 2017 season and analyze Stubhub ticket listings over time

Game-level data includes ticket sales, day of week, opponent, promotion type, and more. A linear regression model was fit to this data in order to both predict game-by-game attendance and to quantify the change in factors. This information could be used to cluster the games for the multi-game ticket packs. Another project involved R with ggplot2 to plot ticket listings over time in order to gain an intuition for how prices change relative to gameday.

PowWow Energy

Our Team: Will Young

Goal: Predict water stress in almond trees using remotely sensed data (e.g. weather, aerial imagery)

Will used established methods in water stress management to engineer features from remote data. These features were used as input to a Gradient Boosting algorithm to predict water stress at the tree level. Other projects included a Kmeans algorithm to measure tree diameter from aerial imagery. He primarily used Python with Numpy, Sklearn, and Pandas.

San Francisco 49ers

Our Team: Melanie Palmer

Goal: Model purchase propensity for season ticket holders as well as third party events to increase sales leads

Melanie used Python to build a gradient boosting classifier to identify purchasers from nearly half a million records. The model was integrated into a dynamic server using Redshift and Crontab to update likelihood-to-purchase scores and predictions on a weekly basis. Data was analyzed and modeled using R and Tableau.

Scientific Revenue

Our Team: Tim Zhou

Goal: Investigate the presence of various economic effects within gaming metrics

Tim wrote internal reports and dashboards of various mobile gaming metrics using R Shiny. He performed various data transformations and cleaning to prepare data for modeling.

Our Team: Lin Chen

Goal: Build a data analysis dashboard and perform feature exploration to optimize models

Lin used SQL and R to analyze some phenomenons of mobile game in-app purchase, and designed the visualization dashboard using R Shiny. She used python, R, and QGIS to explore new features from the external data, performed feature engineering and feature selection, and optimized the models. By using new features, the final model achieved a 20% lift on users’ lifetime value prediction.


Our Team: Ruixuan Zhang, Brigit Lawrence-Gomez

Goal: Develop ensemble classification model to classify book chapters and improve user reading experience

In order to ensure maximum reader satisfaction, Scribd is interested in presenting their digital reading content in the optimal way - skipping all the boring stuff at the beginning and ends of the book. In order to correctly tag their vast digital library, they rely on the power and efficiency of machine learning. We successfully applied various machine learning, feature extraction, and natural language processing tool to chapter-level book data, achieving 96% accuracy using Python, Scikit-learn, and GloVe Word Vectors.


Our Team: Sheri Nguyen

Goal: Built a model to predict the amount of days a package will be estimated to be in transit

As a shipping API platform, Shippo aims to make shipping fast, cost-effective and easy to use for its consumers. This project served to give an alternative arrival estimation in addition to the carrier's estimated delivery date. She tested a variety of models including: Random Forest, Linear Regression, Poisson Regression and Gradient Boosting. To evaluate her results, she used K-Fold Cross Validation and error metrics such as MSE and MAE.

Silicon Valley Bank

Our Team: Jinxin Ma

Goal: Use network analysis to determine the most central customers of the bank

Jinxin used R and Python to perform network analysis using Silicon Valley Bank’s CRM data. The analysis helped determine the most central customers and thus providing the bank information on which customers to further invest in.

Simpatica Medicine

Our Team: Juan Pablo Oberhauser

Goal: Build a Data Acquisition pipeline for Fasta RNA sequencing files

The pipeline used tools such as pseudo-alignment and pyspark to download, reshape, and quantify genomic data. Juan Pablo built a tree-based ensemble classification program in Spark to diagnose several diseases and viral infections. He primarily used Spark, Python and AWS.

Summit Public Schools

Our Team: Arda Aysu

Goal: Build a model to predict student scores on external state-mandated exams using internal metrics

After gaining familiarity with the structure of Summit's student performance data, a model was built in Python to predict their test scores. Time was also spent giving insight on data-driven approaches and helping the Summit team learn Python.


Our Team: Roger Wu

Goal: Quantify the impact of pricing and other factors on conversion

Turo is a car rental marketplace where car owners can rent out their cars to travelers. Understanding how price and other factors impact conversion is important for the success of the business. Using R and SQL, Roger quantified the impact of these factors on conversion. This was done using an observational study and a logistic regression model.


Our Team: Yichao Zhu

Goal: Explore the seasonality and regional outbreak of conjunctivitis based on social media posts

Yichao extracted tweets that mentioned conjunctivitis and all the related fields such as replies, location and time using Python, AWS and Twitter API. Social network based methods are implemented to estimate the users' location, which was not provided. She also suggested NLP (content-based method) for location estimation. She created a database to store the datasets for further usage.

UCSF Oncology

Our Team: Vincent Rideout

Goal: Use Deep Learning to study the radiation therapy pretreatment process

Vincent used convolutional neural networks to predict pretreatment passing rates from images representing the radiation dosage applied to each part of the body (fluence maps). He experimented with many different neural net architectures and hyperparameters to optimize the quality of the predictions. Transfer learning was used to improve performance on a small dataset: a model trained to excel at image recognition on the ImageNet real-world image dataset was repurposed for this problem and turned out to be the best solution. The team is about to submit an academic paper based on their findings and will be presenting at the American Association of Physics in Medicine Annual Meeting & Exhibition.

Valor Water Analytics

Our Team: Tim Zhou, Zefeng Zhang

Goal: Leveraging utility companies' water usage data to optimize operational effectiveness and revenue sources

Tim developed a hybrid clustering algorithm using KMeans and DBSCAN to help flag potentially anomalous water meters. Tim explored using Fourier analysis to identify periodic behavior, but eventually settled on a simple autocorrelation algorithm. Zefeng investigated correlations between gas and water usage data. Zefeng developed an anomaly detection model using lag 1 Markov Chains.

Vida Health

Our Team: Lawrence Barrett

Goal 1: Identify outliers in self-recorded weight data to clean datasets

Lawrence used R and a distance-based outlier detection algorithm to identify outliers in weight data. The algorithm came from an academic paper, but it was modified to work on the weight data that Vida provided.

Goal 2: Evaluate performance of a new coach matching algorithm via A/B testing

Lawrence used A/B testing in R to confirm that the new coach matching algorithm significantly improved communication between coaches and users. He also evaluated the power of the test to determine the reliability of these results.

Goal 3: Pulling data from Vida's database for company reports

Lawrence used SQL in BigQuery, Google's relational database, to pull data for reports that helped determine the effectiveness of Vida's weight loss, diabetes prevention, and blood pressure monitoring programs. This was an ongoing need throughout most of the internship since reports needed to be updated and turned in on a monthly basis. Lawrence used a combination of SQL and R to query and clean the data for these reports.

Goal 4: Testing the Vida ChatBot

Lawrence implemented many tests on functions in production that are used to understand user text input by grabbing the important words needed to respond to the user's queries. He used Python's unit testing framework to test these functions.

Our Team: Donny Chen

Goal 1: Develop recommendation systems to personalize users’ healthcare reading

Donny performed NLP topic modeling and applied information retrieval on large documents and users’ messages to engineer features. He developed recommendation systems including collaborative filtering in Python to personalize healthcare readings upon a keywords search.

Goal 2: Data pull from Google BigQuery

Donny used SQL to retrieve and aggregate data from Google BigQuery to get the data from KPI to users’ metrics. He also used R to cleanse and visualize the data for various analytical reports.

Goal 3: Design and migrate from Google BigQuery RDBMS to Neo4j graph database

Donny contributed to designing schema and importing data for healthcare readings in Neo4j graph database to help transit from a traditional relational database to an advanced and scalable graph database. Retrieving connected information in a relational database is often cumbersome since it requires lots of tables joining which can be achieved much more efficiently in a graph database.

Goal 4: Engineered and deployed webserver event tracking of changes of users in Django

Donny used Django to automate events logging to keep track of changes in users’ information. He worked in Python and contributed to the web server in production.


Our Team: Shivakanth Thudi, Danny Suh, Matthew Wang, Jennifer Zhu

Goal: Improve the revenue share model

Vungle’s goal is to evaluate the feasibility and profitability impact from engaging in a revenue share business model with advertisers. Matthew and Jennifer constructed a data extraction and processing pipeline using Python and Spark and built an interactive dashboard as well as a Machine Learning model to enable the sales team to explore, visualize and predict profitable segments of the market. Danny and Shiva improved Vungle’s lifetime value (LTV) models through the use of libraries such as XGBoost, SKlearn, and Spark ML.


Our Team: Albert Ma

Goal: Implement recommendation system using collaborative filtering on users and wikis

Wikia has recommended wikis at the bottom of their pages selected from a custom list. Albert wanted to generate recommendations using collaborative filtering instead of manually picking which wikis to be shown to users. He implemented a recommendation system using alternating least squares and matrix factorization in Python using packages numpy and pandas. He generated baseline models with random guess and recommending popular wikis to evaluate model performance. He was able to reduce miss rate by 25% and 20% compared to random guess and popular wikis respectively.


Our Team: Maxine Qian, Zainab Danish

Goal 1: Build machine learning models to predict prospects of Open Kitchen products

Goal 2: Incorporate a new variable ‘Clumpiness' and gauge whether it is a valuable addition to the RFM framework through modeling

Maxine and Zainab worked with the analytics team to generate consumer insights for a new brand and built models to predict the likelihood of a user purchasing the new brand. They extracted features using SQL, conducted exploratory data analysis in R, and performed feature engineering and built classification models using Python. The model was used to decide which customers to target for the new brand. Also, they used machine learning methods to gauge whether ‘Clumpiness’ variable it is a valuable addition to the RFM framework.


Our Team: Valentin Vrzheshch

Goal: Build a tool to benchmark the company’s trading performance

Valentin wrote Python scripts that compute indicators of high-frequency trading costs for each order (metrics such as implementation shortfall, toxicity and market impact) using pandas and psql. Valentin also developed dashboards with visualizations of the indicators using R (shiny, plotly, googlevis) for easy and fast assessment of algorithm’s performance.


Our Team: April Liu

Goal 1: Build a fraud detection model

April evaluated lasso logistic regression, random forest, AdaBoost/gradient boosting and built a final model that improved baseline F0.5 score by 35%. She evaluated various performance metrics based on the company’s business model and performed correlation analyses and data transformations.

Goal 2: Pipeline for feature importance analysis

April designed and built different Cassandra DBs to house 100 GBs of data. She imputed missing signals in data used to train risk profile models and implemented hashing method to impute signals on a rolling basis. She also assessed feature importances via random forest classifier and extracted over 100 signals from over 200 GBs of data to identify fraud using Python.

Goal 3: Use one set of signals to replace existing expedite rule to achieve higher performance in filtering out high risk transactions while maintaining high proportion of the expedited transactions

April performed advanced analytics and exploratory data analysis in two different payment source signals to come up a solution to improve the current payment expedite rule.

Our Team: Alice Zhao

Goal: Build fraud detection models

Alice worked on building fraud detection models for Non-Sufficient Fund Fraud which is a difficult problem due to highly imbalanced dataset. Alice tried different sampling methods, cost-sensitive algorithms as well as hashing tricks to build a good model using Python, R and SQL.

Our Team: Jinxin Ma, Alice Zhao

Goal: Compare feature importance measures and build a better fraud detection model

Jinxin and Alice worked under the Risk Data team at Xoom. They compared feature importance measures from random forest, gradient boosting, and extra trees and predicted whether transaction is fraudulent using a logistic regression using Python, R, and Tableau.

Our Team: Jinxin Ma

Goal: Impute missing values for transactions and re-evaluated fraud detection rules

Jinxin created his own database using PostgreSQL and wrote efficient queries to impute missing values for millions of transactions. The imputation improved the performance of fraud detection rules.



Our Team: Ben Miroglio and Chhavi Choudhry

Goal: cluster web sessions to segment users and improve the flow of Airbnb's website and mobile app

Ben and Chhavi employed machine learning techniques to identify features indicative of positive outcomes using R and Python. They built interactive web session visualizer using D3.js to identify key differences among different segments of users and to identify bottlenecks in the session journey.


Our Team: Paul Thompson and Jacob Pollard

Goal: cluster users based on factors influencing event preferences and classify event category based on the event description

Paul and Jake applied the ROCK hierarchical clustering algorithm to event data in Python and clustered users based on the events they attended. They also implemented a Naive Bayes classifier using only base Python data structures, employing 5-fold cross validation, resulting in 75% mean accuracy.

Capital One Labs

Our Team: Vincent Pham and Brynne Lycette

Goal: employ machine learning techniques for credit card fraud detection and build a data unification platform

Capital One's fraud team has collected and built more than two hundred features relevant to classifying fraudulent credit card transactions. Vincent and Bree employed various machine learning techniques using H2O and Dato in order to evaluate software robustness and increase accuracy of fraud prediction. They also implemented a NoSQL data store and a higher level in-memory storage system to unify various streaming and batch processes.


Our Team: Ghizlaine Bennani and Mrunmayee Bhagwat

Goal: cluster similar YouTube channels

Ghizlaine and Mrun developed an algorithm using supervised and unsupervised machine learning techniques using Python and PostgreSQL to cluster similar YouTube channels and videos based on performance and content metrics. This clustering resulted in personalized targeting for multi-channel YouTube content providers. They also modeled median views for individual YouTube videos in their first week using regression analysis.

City of Hope

Our Team: Isabelle Litton

Goal: extract sites of cancer recurrence in clinical notes

Isabelle leveraged natural language processing using Linguamatics to capture cancer recurrence sites from clinical and radiology notes. She also automated the results-validation process with Python, saving approximately two hours per validation.  


Our Team: Tate Campbell and Sharon Wang

Goal: model consumer churn for a product loyalty program that identifies key features contributing to customer retention rates

Tate and Sharon used PySpark to extract relevant data and perform feature engineering on more than 10 GB of data. A random forest classification model was built using Python to predict the amount of time consumers would stay actively enrolled in the program.

Our Team: Miao Lu

Goal: help understand super-user behavior

Miao carried out two separate projects at She created a dashboard employing sunburst diagrams for session-based visit sequence monitoring, using MapReduce (Python), Hadoop streaming and D3 (javascript, html, css). She also analyzed super-user retention using Hive.


Our Team: Meg Ellis and Jack Norman

Goal: create a price-suggestion model to assist event organizers in optimizing ticket sales and revenue

Identifying important features that most influence ticket prices, Meg and Jack implemented a K Nearest Neighbors model that clusters events with similar characteristics, and subsequently leveraged the distribution of costs of these similar, successful events to suggest an appropriate range of ticket prices that the organizer can use when creating their event. Flask was subsequently used to create a web application to allow users to interact with the model.

First Republic Bank

Our Team: Piyush Bhargava, Felipe Chamma and Harry O'Reilly

Goal: optimize liquidity allocation

Felipe and Harry used SQL Server Piyush to developed a new process to optimize cash allocation for the liquidity buffer by leveraging client transaction data and end of day positions. The process was automated, now running on a daily basis to improve performance. An SQL-based tool was also designed to detect unusual customer transaction patterns and alert bank representatives to mitigate liquidity risks. The loan-level loss allocation process was also automated to support capital stress testing required by new financial regulations.


Our Team: Matthew Leach

Goal: investigate customers who claim FLYR's FareKeep product allows customers to lock in a flight price for up to 7 days

Matthew investigated how to better identify which customers were more likely to make a FareKeep claim using clustering techniques to group customer segments, and employing logistic regressions to predict claim rate. He additionally used Bokeh to create a dashboard displaying factors which influence the claim rate.


Our team: Ghizlaine Bennani

Goal: build a dashboard to visualize JUVO data in an interactive fashion

Built a dashboard using Flask app through python to render an interactive D3 visualization dashboard that synchronizes real time data from redshift. The purpose of the dashboard is to help customers understand JUVO business and visualize data to help business unit in their decision making process.


Our Team: David Wen, Jaime Pastor

Goal: create a dashboard to analyze user retention and build customer credit profiles

David built a dashboard using JavaScript and Flask, and architected Juvo's internal data flow to supply data to the dashboard using Airflow. He also built a classifier to predict which users would be retained. Using PostgreSQL and Python (pandas, scikit-learn), Jaime explored Juvo's dataset, engineered features and tested different machine learning algorithms to predict which users will pay back a loan based on their mobile behavior.


Our Team: Tate Campbell, Sharon Wang

Goal: build a machine learning model to predict inquiry frequency to optimize bid prices for Good AdWords

Tate and Sharon used k-means clustering to clusters hours of the day which have similar numbers of impressions and clicks, then employed a random forest to quantify the relationship between cost and inquiries. They also built an optimization algorithm to search for the best combination of daily bid prices based on the predicted number of inquiries and budget constraints.


Our Team: Gabrielle Corbett and Jason Helgren

Goal: validate the utility of an app-based street sweeping alert

Metromile provides an app with convenience features including fuel economy analysis, engine monitoring, and street sweeping alerts. Gabby and Jason developed a logistic regression model using Python and PostgreSQL to predict driver behavior based on past driving habits and whether the driver received a street sweeping alert.


Our Team: Mrunmayee H. Bhagwat

Goal: build a time series forecasting model

Using NLP techniques Mrunmayee categorized Walmart’s unstructured social media data and modeled their social buzz using a generalized linear model. She also performed time series analysis on the data to identify seasonal fluctuations and trend in Walmart’s quarterly revenue and built a revenue forecast model using a SARIMA approach in R.

Radium One

Our Team: Kirk Hunter

Goal: improve mobile targeting and optimize bid pricing in the programmatic advertising space

Programmatic advertising takes place on desktop and mobile devices and the space can yield billions of data points per day. Kirk interacted with extremely large datasets using the distributed computing framework Apache Hive. He built machine learning models using Python’s scikit-learn library that identified mobile users who are most likely to lead to a successful outcome for the company.

Stanford University Graduate School of Business

Our Team: Alex Morris

Goal: develop a structured method by which to extract data from SEC EDGAR filings

Alex assisted in the development of SecParser Python package and implemented a data pipeline which extracts key data for analysis from unstructured SEC EDGAR form filings (Form 4). He subsequently carried out various machine learning and regression techniques on the parsed data to identify which filings have a significant impact on the issuers stock performance following large insider transactions.

Summit Public Schools

Our Team: Jaclyn Nguyen

Goal: identify achievement gaps and calibrate grading system

Jaclyn used national MAP assessments and statistical analysis to confirm that students met their projected assessment growth independent of race and socioeconomic group. She additionally conducted an analysis on whether teachers graded consistently across grade levels and subjects, and provided a regression-based recalibration technique.


Our Team: Alex Romriell and Swetha Venkata Reddy

Goal: create a model to detect conjunctivitis outbreaks

Alex and Swetha performed text and geo-spatial analysis on over 300,000+ tweets to detect local pinkeye outbreaks. They created a framework for identifying tweets directly related to conjunctivitis. Surges in outbreaks were mapped to clinical records nationwide. Time series analysis of the tweets revealed similar trends and seasonality compared to the actual hospital data. Text analysis techniques such as like Latent Symantec analysis on AWS were employed to filter noise from the data. A multinomial Naive Bayes model was also developed based on TFIDF scores of the tweets to predict the sentiment.

University of San Francisco, Advancement Office

Our Team: Jacob Pollard

Goal: identify potential donors

Using Random Forest models in R, Jacob selected 10 among 70 total variables in the USF alumni donor database that had the strongest influence on predicting a potential donor. These variables were employed in building an ensemble of logistic regression classifiers with bagging. This method was subsequently implemented in Python with the help of the Scikit-Learn, Numpy, and Pandas.


Our Team: Paul Thompson

Goal: improve predictions of freelancer job performance ratings

Paul created classification models using LSTM and GRU Neural Networks, Word2Vec and Doc2Vec, and TF/IDF in conjunction with machine learning algorithms such as random forest and support vector machines. He used python scikit-learn, gensim, and keras and ran models both locally and on AWS EC2 clusters (using CloudML) and EC2 GPU (using ssh), succeeding in improving upon the existing production model.

Voodoo Sports

Our Team: Ryan Speed

Goal: develop a framework to support processing and analysis of NBA player tracking data

Ryan built a MapReduce framework in Python to support creation of descriptive and predictive models, and generate a set of analytics output for SportVu NBA Player Tracking Data which generates 800,000 data points per game. Clustering an similarity scoring was conducted on player location distributions, court spacing, and distance traveled across multiple 55GB datasets.

Vivid Vision

Our Team: Alex Romriell and Swetha Venkata Reddy

Goal: determine the efficacy of specialized OcculusRift eye treatment software

Alex and Swetha optimized the ETL (extract, transform, load) processes using Python and PostgreSQL to better ingest user game-play data. SQL was used to query the dataset and retrieve key eye metrics from the game logs. They confirmed that the treatment correctly targeted the weak eye. They also created a D3.js dashboard to visual patterns and behaviors of users’ gaming sessions.


Our Team: Chhavi Choudhury, Yikai Wang and Wanyan Xie

Goal: develop a User Conversion Rate Model and a User Lifetime Value Model as a mobile app advertising company

Vungle built an ad recommendation system based on a user-conversion rate prediction model with ad view-install data. Wanyan implemented a factorization machine model to quickly calculate the weights of interaction terms in logistic regression model and Yikai ran a test-performance-based feature selection algorithm to select features in current model and also implemented a gradient boosting tree model. Using Python and Spark, they were able to improve both the efficiency and accuracy of predictions. In an attempt to build user lifetime value (LTV)-related models, Chhavi, Yikai and Wanyan identified germane user-related features and developed various models to predict active user days and 7-day revenue across different advertisers.


Our Team: Isabelle Litton

Goal: automate content tagging process to improve ad targeting

Isabelle trained multiple classifiers using Python’s Sklearn package and tfidf features to achieve an overall accuracy 86%.

Williams-Sonoma, Inc.

Our Team: Jaclyn Nguyen, Sakshi Bhargava, and Henry Tom

Goal: develop an automatic image selection and image tagging algorithm

Williams-Sonoma’s product feed contains a tremendous amount of image data, and it is difficult to automatically tag images for both analysis and product recommendations. Jaclyn, Sakshi and Henry successfully automated this process through the use of custom built ensemble image processing algorithms, superpixels, and other recent imaging advances, achieving an accuracy of 99% between silhouette/product images. They also developed a color prediction and color labeling algorithm with 90% accuracy.


Our Team: Erica Lee and Binjie Lai

Goal: improve and test dynamic pricing strategies

Wiser provides pricing strategies for e-commerce retailers to optimize revenue. Binjie applied tuned ridge regression and time series models for prediction, designing experiments and testing results, improving upon the current prediction model by 15%. Erica employed a linear mixed effects model to measure the effectiveness of the dynamic pricing engine, using technologies which included Python, Spark, and PostgresSQL, as well as working on big data platforms Amazon Redshift and Databricks.


Our Team: Felipe Formenti Ferreira

Goal: enhance Womply's Statboard metrics, evaluate customer churn, and identify high-value clients

Using client's daily revenue data, Felipe used python to parse the transaction history and provide business insights such as growth rate and average transaction size. Felipe also used principal component analysis to eliminate any correlation between predictor variables and identify influential factors contributing to the customer retention.



Our Team: Brian Kui and Tunc Yilmaz

Goal: implement generalized linear models and neural network models to improve existing load forecasting models

AutoGrid helps industrial customers shed power by controlling the operation power consuming devices such as water heaters. The team evaluated modifications to the forecasting models proposed by the data science team in order to help AutoGrid decide whether it is feasible to incorporate the modifications in the production code. They analyzed signals received, load, and the state of the water heaters, and identified errors in operation.


Our Team: Cody Wild

Goal: provide a means for ChannelMeter to leverage its 300,000-channel database to identify close niche competitors for product's subscribers

Cody utilized clustering and topic modeling, with a Mongo and Postgres backend, to construct a channel similarity metric that utilizes patterns of word reoccurrence to identify nearest neighbors in content space.


Our Team: Kailey Hoo, Griffin Okamoto, and Ken Simonds

Goal: mine actionable insights from over 20,000 online product reviews using text analytics techniques in Python and R

The team quantified consumer opinions about a variety of product attributes for multiple brands to assess brand strengths and weaknesses.

Convergence Investment Management

Our Team: Matt Shadish

Goal: apply machine learning techniques to improve an existing trading strategy

Matt used Python and pandas to incorporate external variables and build cross-sectional models to a time series problem. He also created visualizations of current trading strategy performance using ggplot2 in R.

Danaher Labs

Our Team: Brian Kui and Tunc Yilmaz

Goal: query time-series printer data that is highly unbalanced: less than 200 faults within two million time records

Brian and Tunc applied machine learning algorithms to predict rare failures of industrial printers in order to find a model to implement in production for real-time predictions.

Our Team: Alice Benziger

Goal: create a popularity index for’s Word of the Day feature based on user engagement data, such as page views (on mobile and desktop applications), email click-through rates, and social media (Facebook, Instagram, and Twitter) interactions

Alice applied machine learning techniques to implement a model to predict the popularity score of new words to optimize user engagement.


Our Team: Matt Shadish

Goal: perform analysis of historical retail product prices across stores

Using Python Matt created visualizations of these analyses in Matplotlib. He then applied the analysis as a functional solution (using RDD’s and DataFrames) so as to take advantage of Apache Spark. This enabled an analysis of billions of price history records in a reasonable amount of time.


Our Team: Steven Chu

Goal: define, calculate, and analyze product features, user lifetime value, user behavior, and film success metrics

As Fandor is a subscription-based model, their focus is to bring in more subscribers and retain current subscribers. There is a lot of potential to use metrics to segment as well as run predictions for users. Currently, one of these metrics (film score) is in production as a time-series visualization for stakeholders to see and utilize in their own decision-making processes.


Our Team: Florian Burgos and Dan Loman

Goal: use machine learning to predict the price of connecting flights based on the price of the one-way tickets

Florian and Dan improved user engagement on the website by displaying content on the landing page with d3. They also computed content overnight using distributed computing on an AWS ec2 instance to find the best deals in the U.S. by origin.

GE Software

Our Team: Chandrashekar Konda

Goal: solve parts normalization and payment terms mapping tasks

Using Hadoop and Elastic search, Chandrashekar identified similar mechanical parts out of five million parts in oil rig design versions for GE Oil & Gas business.

In a separate project Chandrashekar using Python and Talend, we identified the best payment terms from one million payment terms across GE’s different businesses.
Sourcing: Using Python, we compared over 1.8 million purchase transactions with 50,000 of GE’s products to ascertain whether GE can benefit if all materials are procured from other GE subsidiaries.


Our Team: Sandeep Vanga

Goal: perform unsupervised text clustering to gain insights into representative sub-topics

Sandeep built a baseline model using Kmeans clustering and tfidf features. He also devised two variants of Word2Vec (deep learning-based features) models. The first method is based on aggregation of word vectors and the second method is based on Bag of Clusters (BoClu) of words. He also implemented elbow method to choose optimal number of clusters. These algorithms are validated on 10 different brands/topics using the news data collected over one year. Various quantitative metrics such as entropy, silhouette, score, etc. and visualization techniques were used to validate the algorithms.


Our Team: Brendan Herger

Goal: study existing data stream to drive business decisions, and optimized data extract-transform-load process to enable future insightful real-time data analysis

Though Lawfty’s existing pipeline had substantial outage periods and largely unvalidated data, Brendan was able to support creating a new a Spanish language vertical, creating near-real-time facilities, and contribute to better targeting AdWords campaigns.

Our Team: Fletcher Stump Smith

Goal: perform natural language processing (NLP) and document classification using Naive Bayes with scikit-learn and sparse vector representations (Scipy).

Fletcher wrote code to store and process text data, using Python and SQLite. He performed continuous testing and refactoring of existing data science code. All of this went towards building a framework for finding words relevant to specific jobs.

Los Angeles County

Our Team: Michaela Hull

Goal: find duplicate voters using exact and fuzzy matching, feature engineering such as distances between two points of interest, trolling the Census Bureau website for potentially useful demographic features, and classification models, all in the name of poll worker prediction

Michaela employed the use of distributed computing, the Google Maps API, relational databases, dealing with large databases (~5 million observations), and a variety of machine learning techniques.

Our Team: Layla Martin and Patrick Howell

Goal: develop a machine learning model to predict a flavor label for every food in MyFitnessPal’s database

Using primarily Python and SQL, the team built a data pipeline to better deliver subscription numbers and revenue to business intelligence units within UnderArmour.


Our Team: Leighton Dong

Goal: build consumer credit default risk models to support clients in managing investment portfolios

Leighton prototyped a methodology to measure default risk using survival analysis and a cox proportional hazard model. He developed an automated process to comprehensively collect company information using Crunch Base API and store them in a NoSQL database. Leighton also engineered datasets to discover potential clients for analytics products (such as retail pricing optimization) and collected company names and other text features from Bing search result pages automatically.


Our Team: Brendan Herger

Goal: build out multiple data pipelines and utilize machine learning to help drive REVUP's beta product

Brendan was able to create three new data streams which were directly put into production. Furthermore, he utilized natural language processing and machine learning to validate and parse mechanical turk output. Finally, he utilized spectral clustering to identify individual’s political affiliation from Federal Elections Commission data.

Stella & Dot

Our Team: Rashmi Laddha

Goal: build a predictive model for revenue forecasting based on stylist’s cohort behavior

Rashmi clustered stylists’ micro-segments by analyzing their behavior in initial days of joining the company and used k-means clustering on three parameters to cluster stylists. She then built a forecast model for each micro-segment in R using HoltWinters filtering and ARIMA, tuning the model to get an error rate within 5%. She also performed sensitivity analyses around changing early performance drivers in stylist’s life cycle.

Summit Public Schools

Our Team: Griffin Okamoto and Scott Kellert

Goal: demonstrate the efficacy of online content assessments.

Griffin and Scott demonstrated the efficacy of Summit's online content assessments by using student scores on the assessments and demographic information to predict standardized test scores. They developed a linear regression model using R and ggplot2 and presented results and recommendations for Summit's teaching model to the Information Team.


Our Team: David Reilly

Goal: examine over 300,000 trips in the city of San Francisco to study driver behavior using SQL and R

David constructed behavioral and situational features in order to model driver responses to dispatch requests using advanced machine learning algorithms. He analyzed cancellation fee refund rates across multiple cities in order to predict when a cancellation fee should be applied using Python.

USF Center for Institutional Planning and Effectiveness

Our Team: Layla Martin and Leighton Dong

Goal: analyze influential factors in USF undergraduate student retention using logistic regression models

The team predicted students' decisions to withdraw, continue, or graduate from USF by leveraging machine learning techniques in R. These insights have been used to improve institutional budget planning.


Our Team: Sandeep Vanga and Rachan Bassi

Goal: automate the process of image tagging by employing image processing as well as machine learning tools

Williams-Sonoma’s product feed contains more than a million images and the corresponding meta data — such as color, pattern, type of image (catalog/multiproduct/single-product) — is extremely important to optimize the search and product recommendations. They automated the process of image tagging by employing image processing as well as machine learning tools. They used image saliency and color histogram-based computer vision techniques to segment and identify important regions/features of an image. A decision tree-based machine learning algorithm was used to classify the images. They were able to achieve 90% accuracy in case of silhouette/single-product images and 70% accuracy in case of complex multiproduct/catalog images.


Our Team: Luba Gloukhova

Goal: quantify the performance of an underlying high frequency trading strategy

Luba expanded existing internal database with data sources from Bloomberg Terminal, enabling deeper understanding of symbol characteristics underlying strategy performance. She also identified discrepancies in an end-of-day trading analysis database.

Zephyr Health

Our Team: Daniel Kuo

Goal: develop a supervised machine learning algorithm for a Publication Authorship Linkage project to determine whether multiple publications are co-referred to the same authors

Via Zephyr's DMP system, the algorithm leverages the existing institution-to-institution record linkage to easily augment new attributes and features into models. The modeling techniques used in this project include logistic regression, decision trees, and adaboost. The team used the first two algorithms to perform feature selections and then used the adaboost to improve performance.

Our Team: Monica Meyer and Jeff Baker

Goal: Develop a classification algorithm/model for the Disease Area Relevancy project that would predict and score how related a given document was to a specified disease area.

The model provides Zephyr the ability to quickly score and collect documents, as they relate to a disease, to provide resulting documents to clients. Our team explored four different algorithms to address this problem: logistic regression, bagged logistic, naïve Bayes, and random forest. Both binary and multi-label approaches were tested. The approach is scalable to include other document types.

Our Team: WeiWei Zhang

Goal: Determine disease area relevancy for medical journals using machine learning techniques.

The project began with data sampling from the PubMed database. Through natural language processing and feature engineering process, the text of abstract and title of medical documents were transformed into tokens with TF-IDF (Term Frequency, Inverse Document Frequency) scores. By leveraging the characteristics of a random forest classifier, the most important features from the feature space were selected. The body of the model was a multi-label logistic regression. The results were evaluated based on the accuracy, recall, precision, and F1 score. In short, the project is a great example of handling unlabeled data, imbalanced classes, and multi-label problems in a machine learning context.